Ana Menü

Derse Yardımcı

Dersler

Dersler

Ana Sayfa

İletişim

Yorum Defteri

Site Map

Tenefüs

Test İndir

Videolu Anlatımlar

Kitap Özetleri

Ödev Kapakları

Türkçe

Matematik

Fen Bilgisi

Sosyal Bilgiler

İngilizce

Fizik

Biyoloji

Edebiyat

Din Kültürü

Sağlık Bilgisi

Ders Arşivleri

Denklem Cozme

DENKLEM ÇÖZME

I. BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER

A. TANIM

a ve b gerçek (reel) sayılar ve a ¹ 0 olmak üzere,

ax + b = 0 eşitliğine birinci dereceden bir bilinmeyenli denklem denir.

Bu denklemi sağlayan x değerine denklemin kökü, denklemin kökünün oluşturduğu kümeye denklemin çözüm kümesi denir.

 

B. EŞİTLİĞİN ÖZELİKLERİ

  1.

  2. a = b ise, a . c = b . c dir.

  3. a = b ise,

  4. a = b ise, an = bn dir.

  5. (a = b ve b = c) ise, a = c dir.

  6. (a = b ve c = d) ise,

  7. (a = b ve c = d) ise, a . c = b . d dir.

  8. (a = b ve c = d)  ise, 

  9. a . b = 0 ise, (a = 0 veya b = 0) dır.

10. a . b ¹ 0 ise, (a ¹ 0 ve b ¹ 0) dır.

11.  ise, (a = 0 ve b ¹ 0) dır.

 

 

C. ax + b = 0 DENKLEMİNİN ÇÖZÜM KÜMESİ

  1. a ¹ 0 olmak üzere,

  1. (a = 0 ve b = 0) ise, ax + b = 0 denklemini bütün sayılar sağlar. Buna göre, reel (gerçel) sayılarda çözüm kümesi IR dir.

  2. (a = 0 ve b ¹ 0) ise, ax + b = 0 denklemini sağlayan hiçbir sayı yoktur.
    Yani, Ç = Æ dir.

 

 

II. BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

A. TANIM

a, b, c Î R, a ¹ 0 ve b ¹ 0 olmak üzere,

ax + by + c = 0 denklemine birinci dereceden iki bilinmeyenli denklem denir.

Bu denklem düzlemde bir doğru belirtir. Doğru üzerindeki bütün noktaların oluşturduğu ikililer denklemin çözüm kümesidir.

Buna göre, ax + by + c = 0 denkleminin çözüm kümesi birçok ikiliden oluşur.

Birden fazla iki bilinmeyenli denklemden oluşan sisteme denklem sistemi denir.

 

 

B. ÇÖZÜM KÜMESİNİN BULUNMASI

Birinci dereceden iki bilinmeyenli denklem sistemlerinin çözüm kümesi; yok etme yöntemi, yerine koyma yöntemi, karşılaştırma yöntemi gibi yöntemlerden biri ile yapılır.

 

1. Yok Etme Yöntemi

Değişkenlerden biri yok edilecek biçimde verilen denklem sistemi düzenlenir ve taraf tarafa toplanır.

Taraf tarafa toplandığında veya çıkarıldığında (ya da bir düzenlemeden sonra) değişkenlerden biri sadeleşiyorsa “Yok etme yöntemi” kolaylık sağlar.

 

2. Yerine Koyma Yöntemi

Verilen denklemlerin birinden, değişkenlerden biri çekilip diğer denklemde yerine yazılarak sonuca gidilir.

Denklemlerin birinden, değişkenlerden biri kolayca çekilebiliyorsa, “Yerine koyma yöntemi” kolaylık sağlar.

 

3. Karşılaştırma Yöntemi

Verilen denklemlerin ikisinden de aynı değişken çekilir. Denklemlerin diğer tarafları karşılaştırılır (eşitlenir).

Her iki denklemden de aynı değişken kolayca çekilebiliyorsa, “Karşılaştırma yöntemi” kolaylık sağlar.

 
Copyright 2009-2010 Her Hakkı Saklıdır. Designed By Ders-Arsivleri
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol